
Improve Google-Drive
Support in GVfs

Standard Questionnaire

● What is your e-mail address and IRC nick [Contact Details]?
Student’s Name: Mayank Sharma

University Name: Indian Institute of Technology, Kanpur, India

E-Mail Addresses:

1. **********************

2. **********************

IRC Nickname:

1. mayanksha on GIMPNet (Idle on #nautilus, #gnome-hackers, #libgdata)
2. mayanksha on FreeNode (Idle on #ffmpeg, #ffpmeg-devel and #gsoc)

My Github: https://github.com/mayanksha

My GitLab: https://gitlab.gnome.org/mayanksha

Other Contact Details:

Skype: https://join.skype.com/invite/heQnzcMgQOmx

Facebook: **********************

 Hangouts: **********************

● What is your blog address?
https://msharma.in

It just has one post for now, but I have jotted down ideas for some good posts
which I plan on writing once my semester is over.

Also, over the 12 weeks duration I’ll be writing bi-weekly posts detailing what I
achieved.

https://github.com/mayanksha
https://gitlab.gnome.org/mayanksha
https://join.skype.com/invite/heQnzcMgQOmx
https://msharma.in/

● What city and country will you reside in during the summer?
I plan on staying in Bangalore, India for the majority of my summers. I’ll go back to

my home-town for once during the summer, but it’s just a 3 hour flight, and I’ll have internet
connectivity (Broadband) at both the places.

● What is your academic background, including university,

major, and expected or achieved graduation date for any
degree you have or are pursuing?

I’m a junior undergraduate pursuing my majors in Computer Science and
Engineering from Indian Institute of Technology, Kanpur. I have a keen interest in Systems
programming and Software Architecture and have a fairly good knowledge about Networks
and *nix systems.

I’m expected to graduate by July, 2020.

● Who is a possible mentor for the project you are proposing?
Ondrej Holy is the current maintainer of GVfs and I’d wish he be my mentor. His

email address is oholy@redhat.com. He has been very helpful to me, and has introduced
me quite well to the GVfs ecosystem (since it has so many different backends).

● What is the ultimate goal of your proposal?

Currently, the Google-Backend for GVfs supports only a subset of operations
allowed by Google-Drive on the web-interface. The major problem with supporting all the
operations is because of the difference in how POSIX systems handle files whereas how a
database-backed system like Google-Drive handles files. For a POSIX system, the file path
uniquely determines a file (or a link to some other file) and hence file paths are used as the
default identifiers. Google-Drive on the other hand identifies files by unique IDs which are
generated by Google servers.

This difference results into limitations as to what operations can be performed with
the current libgdata APIs. Since, each file’s identifier is its ID, i.e. “name” equals ID, we have
to specifically use “display-name” for storing a file’s title, which is what is shown by nautilus.

Simply copying/moving files from one folder to another results into an error “Operation
not supported” so as to preserve the file’s title. Copying/Moving is one of the fundamental
operations that should be possible on a file. My ultimate goal with this proposal is to make the
Google-Drive backend more usable in the following ways:

mailto:oholy@redhat.com

Primary Goals :

● Support Copy/Move operations on files. Develop the relevant API in libgdata to
support updating file objects with `properties`. [Issue]

● Extend the support of deletion to enable deleting shared files. [Issue]

● Write tests for the GVfs Google-Drive backend. Presently, there are no tests and
each build on drive backend needs to be manually tested.

Secondary Goals (If time permits):

● Help resolve this Merge Request (MR !2 (libgdata)), since this Project aims to
implement document move across folders.

● For the files shared by other users, show some emblem.

● For files having multiple parents, show some emblem to prevent unexpected
things from happening. [Issue]

● What applications/libraries of GNOME will the proposed work
modify or create?

The plan is to augment libgdata with an API to support storing the ID of the original
file in the file update request that is made to the Google-Drive API. As has been documented
in the Drive v2 API (v2 API Reference), the optional `properties` can be used to store the
original ID of the file along with any other data which we may deem to be fit. (There’s an
upper limit as to how much we can store in `properties` and it’s pretty low, so we need to
think of a good design)

In addition to augmenting libgdata, we’ll also have to make changes to GVfs
Google-Drive backend and make it work well with the new libgdata API(s). There are
also some specific issues pertaining to the Drive Backend (inability to delete shared
files) which I’d like to give attention to.

Finally, to test the newly implemented API in libgdata, I will write tests for the same.
Apart from libgdata, testing needs to be done with Google-Drive backend as well, and a new
test-suite needs to be implemented. Such a test-suite will currently have to be manual, for it
needs OAuth Authentication and Authorization to access a

Google-Drive but since presently there are no tests at all, we’ll be good with these as well. In
future, such a test-suite may be added to Gitlab CI but it’s fairly complicated, and
automating the whole process isn’t feasible in a 3 month time-frame.

https://gitlab.gnome.org/GNOME/gvfs/issues/8
https://gitlab.gnome.org/GNOME/gvfs/issues/265
https://gitlab.gnome.org/GNOME/libgdata/merge_requests/2
https://gitlab.gnome.org/GNOME/gvfs/issues/297
https://developers.google.com/drive/api/v2/reference/files/update

● What benefits does your proposed work have for GNOME and its
community?

The issue with copying/moving files in nautilus for Google-Drive backend dates as
back as 2015 when it was reported. That time, file copy/move was indeed supported but it
resulted into losing display-names for copied files. The relevant bug is on bugzilla.

The resolution of such a high-priority bug implies the following benefits for the
GNOME community:

1. Significant improvements to the usability of Google-Drive mounts in nautilus.
Add the functionality to copy/move files between folders in nautilus (for
Google-Drive mounts).

2. Extension of libgdata with an API which it currently lacks. The `properties` field
on file objects can be used to store any kind of key-value pairs. For GVfs, this has
immediate benefits since it allows us to store volatile paths.

A number of projects like gnome-photos, evolution-data-server and shotwell list libgdata as one of

their dependencies. They may benefit from such a thing in the future if and when they
wish to add custom metadata to file objects.

● Why are you the right person to work on this project?

Honestly, across the list of ideas, the only project which immediately caught my mind
was this. GNOME Shell (and the whole ecosystem) has been my go-to desktop environment
since I installed Arch Linux. Nautilus and GVfs have been the most useful apps since I’ve to
frequently access my Virtual Machine allotted by University and an EC2 Instance too for my
blog. For file transfers, instead of relying on scp (which is cumbersome), I use sftp in
nautilus. Same goes for samba backend as well for accessing files shared by my friends who
are on Windows Network.

I have undertaken a rigorous course on Operating Systems wherein we
implemented a FUSE based file system and I believe that I learnt a lot from that. Apart
from this, I have a good understanding of Networks and Socket API, for I wrote a basic
web-server in C to serve static HTML files as well as files of other MIME-types. (Github)

I’m currently doing courses on Software Architecture, and Systems and Network
Security wherein we’re learning to exploit various types of vulnerabilities and how to patch
them. Having an exposure to security always helps while developing libraries and APIs for
low-level interaction in C.

From the point of view of language, C/C++, Golang and Typescript have been my
go-to choices for whatever projects I have built over the past couple of years. I also have

https://bugzilla.gnome.org/show_bug.cgi?id=755701
https://github.com/mayanksha/CS252/tree/master/A1

used the various APIs provided by Google in the past (for various projects) and have a

good knowledge of interacting with them. Having been an avid fan of node.js in the past, I have also
learnt about concurrency models and looked into libuv.

As a student of one of the premier institutions in the country, I have learnt how to
solve challenging problems and to give my best at everything. Given the chance to do this
project under my mentor for GNOME Organisation, I assure to give my hundred percent to it,
and would strive to make GVfs more usable.

● How do you plan to achieve completion of your project?

My proposed timeline will be as follows:

Dates (2019) Milestones/Deliverab
les

Before May, 6 I’ll be working on and off with my mentor to resolve bugs here and there.

Community Bonding Period
Begins

May, 6 -- May, 26 With the help from my mentor, I’ll be familiarizing myself with the
existing codebase and think about a concrete solution to the problem.
I’ll also work on a couple of bugs from libgdata and GVfs to better
transition into this project.

Coding Officially Begins

May, 27 -- June, 10
(Week 1 & 2)

Write functions to interact with Drive API’s file objects. Extend the
current `GDataDocumentsService` to include the `properties` field in
request.

As per Drive v2 API (v2 API Reference), only the update operation
supports adding the `properties` in request body.

June, 11 -- June, 24
(Week 3 & 4)

Complete libgdata’s API for setting `properties` on file
copy/move/uploads.

Documenting libgdata’s code according to the convention. Write tests for
the new API, and thoroughly test it.. Fix any bugs. Create an MR, and put
everything into review by maintainers.

First Phase Evaluation

June, 28 -- July, 10
(Week 5 & 6)

Make changes to design (add/change any data structures) to create
room for new libgdata API. First focus on modifying the functions

`resolve_dir()` and `g_vfs_backend_google_copy()` and get

https://developers.google.com/drive/api/v2/reference/files/update

it to work efficiently with volatile paths, while ensuring that changes to
`resolve_dir` doesn’t break anything else.

Test these functions manually for any problems and fix bugs. Create MR
and have the Merge Requests in discussion/review by mentors.

July, 11 -- July, 22
(Week 7 & 8)

Start working on move operations. Currently, it relies on copy and delete
fallback.

Add support for move operations. Make changes to the vtable to include
move or try_move actions by creating
function`g_vfs_backend_google_move()` to support both synchronous
as well as asynchronous move operations. Also, make these
operations Cancellable.

Test the copy/move operations to check it doesn’t break anything, and
fix any bugs. By the end of this week, the move/copy operations should
be working with nautilus.

Second Phase Evaluation

July, 26 -- Aug, 9
(Week 9 & 10)

Develop a test-suite for Drive-Backend. There’s a lot of edge-cases where
Google Drive behaves oddly compared to a normal file system. Most (if
not all) of those needs to be implemented and documented for.

I plan on writing a man page for gvfsd-google describing the
abnormalities of google-drive backend.

Refine the GVfs code to make it more presentable. Add final touches to
the documentation, and ready the project for submission.

Aug, 10 -- August,
26

(Week 11 & 12)

Finalize the Merge Requests after discussion and get the code merged for
the next release. Fix other bugs pertaining to GVfs in general.

Improve the overall usability of GVfs. If enough time is there, start
working on secondary goals as well.

During this week, I have planned to attend my first GUADECl, so I’ll try to
finish most of my work before this week only.

Final Evaluation and GSoC
Results

● For GUADEC, the GNOME conference hosted this year 23rd
August - 28th August in Thessaloniki, Greece, we encourage you
to do a small presentation of 3 minutes. What part of your
project will be showable?

Given the opportunity to attend to GUADEC, I’ll most certainly attend it and would
love to present my approach to the problem at hand in GSoC, and what its solution implies
to the uses of Nautilus as a Google-Drive client. I’ll also like to present my journey as a first
time GSoC’er and how I made my way from a complete newbie to a contributor.

● What are your past experiences with the open source world

as a user and as a contributor?
I’ve interacted with a fair amount of people from the open-source community and

so far have had pretty good experiences. From the perspective of a user, I’m a proponent of
Open-Source software and I use open-source products wherever possible. In my university,
we have fests to introduce people to open-source world and how to begin contributing. For
their first non-trivial Pull Request, we also provide students with a T-shirt.

From a contributor’s perspective, wherever I’ve introduced myself as a newcomer,
people have welcomed me and have replied to my doubts with full enthusiasm. Apart from
GVfs, I’ve contributed to the cowrie honeypot in the past (1 issue resolved, 1 pending) and
to gnome-maps (I have an MR pending there).

For any queries pertaining to GNOME products, I head over to gnome-hackers IRC
and people there have been very helpful. All in all, I think very positively of the open source
software ideology and that’s why I chose to contribute to GNOME organization.

● Please include a link to the committed code in Bugzilla or

GitLab merge requests for the issues you fixed for the GNOME
module your proposal is related to.

I’ve so far contributed in the following ways to GVfs project:

● Unification of strings (First Contribution) (Merged)
https://gitlab.gnome.org/GNOME/gvfs/merge_requests/37

● afp: Fix afp backend crash when no username supplied (Merged)
https://gitlab.gnome.org/GNOME/gvfs/merge_requests/38

https://gitlab.gnome.org/GNOME/gvfs/merge_requests/37
https://gitlab.gnome.org/GNOME/gvfs/merge_requests/37
https://gitlab.gnome.org/GNOME/gvfs/merge_requests/38
https://gitlab.gnome.org/GNOME/gvfs/merge_requests/38

● Revert "sftp: Always use port 22 if not specified" (Merged)

https://gitlab.gnome.org/GNOME/gvfs/merge_requests/40

● samba: Support "anonymous" user to try anonymous mount first (Pending)
https://gitlab.gnome.org/GNOME/gvfs/merge_requests/41

Apart from these, I’m also working on a patch for this issue:

Support deleting shared Google Drive files [WIP]
https://gitlab.gnome.org/GNOME/gvfs/issues/265

● If available, please include links to any other code you wrote

for GNOME or other open source projects.
I have worked for the Cowrie Honeypot (GitHub) and provided an MR

https://github.com/cowrie/cowrie/pull/1051 (Merged)

I have also worked on the Gnome-Maps application and have an MR

https://gitlab.gnome.org/GNOME/gnome-maps/merge_requests/26/diffs (Pending)

● What other relevant projects have you worked on previously
and what knowledge you gained from working on them?

During my Junior year, I took a course on Operating Systems wherein I
implemented various syscalls (like sleep, clone, fork, etc) in an x64 based simulator
(Gem5). Apart from syscalls, I had also worked on handling page-faults in the kernel
space and subsequent page table walks (which I implemented successfully).

Apart from this, I’ve worked on a FUSE Based file system (BBFS) wherein we were
supposed to write the low-level file handling (dirents and inodes) semantics to support a
key-value store (keys being files, values being data stored inside files). I opted for a design
similar to ext2 having direct, indirect and doubly indirect blocks. As a part of optimization, I
also added an inode cache to mitigate slow inode fetches due to disk IO.

I’ve also worked on a project - “Cryptographically Secure Key-Value Store with
Sharing” (written in Golang). The design and code for the same is present here.

During my fresher year, I had finished a project on Linux From Scratch and bootstrapped
a SysV Init based barebones distro (from host kernel). I automated the installation of various
packages by fetching data from LFS documentation and executing scripts for them. (Github)

https://gitlab.gnome.org/GNOME/gvfs/merge_requests/40
https://gitlab.gnome.org/GNOME/gvfs/merge_requests/40
https://gitlab.gnome.org/GNOME/gvfs/merge_requests/41
https://gitlab.gnome.org/GNOME/gvfs/merge_requests/41
https://gitlab.gnome.org/GNOME/gvfs/issues/265
https://github.com/cowrie/cowrie
https://github.com/cowrie/cowrie/pull/1051
https://github.com/cowrie/cowrie/pull/1051
https://gitlab.gnome.org/GNOME/gnome-maps/merge_requests/26/diffs
https://gitlab.gnome.org/GNOME/gnome-maps/merge_requests/26/diffs
https://github.com/mayanksha/crypt-key-value-store
https://github.com/mayanksha/lfs

● What other time commitments, such as school work, exams,
research, another job, planned vacation, etc., will you have
between May 6th and August 26th? What are the dates for
these commitments and how many hours a week do these
commitments take?

I’ll be taking GSoC as a full time commitment during my vacations. I have semester
holidays starting May, 2, 2019 and I’ll be free until July, 25, 2019. I’ll be staying at my
brother’s home in Bangalore and will be utilising most of my productive time towards this
project only.

After July, 25, 2019, I’ll start with my 7th semester but I have very less load (since it
will be my penultimate semester). Hence, I can easily accommodate my schedule to give
time to GSoC.

My working times vary a lot (some days I work early in the morning, some days late
into the night), yet I can consistently manage around 35-45 hours per week.

